
High Energy EM Particle
Transportation on Coprocessors

FNAL/PDS/Geant4 R&D

P. Canal, D. Elvira, S.Y. Jun, G. Lima

Physics and Detector Simulation Meeting
December 5, 2013

Introduction
�  Future HEP software for HPC/HTC

�  hardware landscape is rapidly changing for power
efficiency (advent of the many core era)

�  parallelism is no longer optional, but it must be
explored thoroughly and present many challenges

�  maximize instruction throughput and data locality

�  Our vision for HEP/HPC detector simulation
�  to have a massively parallelized particle (track level)

transportation engine
�  comply with different architectures (GPU, MIC and etc.)
�  demonstrate a highly parallelized realistic HEP

detector simulation on a hybrid computing platform

12/05/2013 PDS Meeting 2

Concurrent Computing Model
�  Host (CPU) + Coprocessors (GPU, MIC)

12/05/2013 PDS Meeting 3

Multicore

Cache

Hyeprthreading

Vectorization

SIMD/SIMT

Phi Cluster on Wilson
�  6 Intel Xeon E2620

�  12 cores @ 2GHz
�  32 GB each phix and gpux

�  4x4 Intel Xeon Phi 5110P
�  60 cores @ 1.053 GHz
�  8GB

�  2 Nvidia K20 Kepler GPU
�  2496 cores @ 0.7 GHz
�  5GB

�  Geant4R&D on cluck
�  AMD Opertron (12 cores)
�  Fermi M2090 (512 cores)

12/05/2013 PDS Meeting 4

Detector Simulation in Coprocessor
�  GPU (CUDA) applications

�  require maximum SIMT in
conjunction with TLP

�  a good example of hybrid HPC

�  many opportunities for
challenging development in
algorithms and efficient
memory managements

�  MIC for parallel computing
�  generic C/C++

�  OpenMP/TBB/CilkPlus/OpenCL

�  Vectorization/SIMD

�  load balancing/work stealing

12/05/2013 PDS Meeting 5

Goal and Key Components
�  Develop a massively parallelized EM particle

transportation engine for many-core architects

�  Geometry, physics, transportation, task management

12/05/2013 PDS Meeting 6

Track Level Parallelism and Split Kernel
�  Stepping: simple map or expand (survivor/secondary)

�  GPIL+sorting+DoIt: split and repartition (by physics
process, particle type, geometry and etc.)

12/05/2013 PDS Meeting 7

Status
�  GPU prototype was implemented with CUDA

compatible device codes
�  key components, pRNG, sorting, memory management

�  evaluate performances for a simple CMS ECAL and a
magnetic field map as well as sub-components of codes

�  GPU device codes are fully ported to MIC platform
�  tested with simple OpenMP, TBB, CilkPlus applications

�  test more examples and understand performance

�  Integrate the prototype with the vector prototype
�  coprocessor broker (by Philippe)
�  optimize the device codes (top-down approach)

12/05/2013 PDS Meeting 8

GPU Performance
�  Hardware (host + device)

�  Performance measurement
�  (4096x32) tracks
�  Gain = Time(1 CPU core)/Time(total GPU cores)

Time=(data transfer + kernel execution)
�  default <<< Block, Thread >>> organization

M2090<<<32,128>>> and K20<<<26,192>>>

 12/05/2013 PDS Meeting 9

Host (CPU) Device (GPU)

M2090 AMD Opertron™ 6134
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)
512 cores @ 1.3 GHz

K20 Intel® Xeon® E5-2620
24 cores @ 2.0 GHz

Nvidia K20 (Kepler)
2496 cores @ 0.7GHz

Performance - Transportation
�  Decompose transportation by the particle type

�  separate kernels is ~30% faster for γ:e- = 0.2:0.8 mixture

�  Performance of numerical algorithms for the equation
of motion of a charged particle in a magnetic field

GPU Type Algorithm CPU[ms] GPU[ms] Kernel[ms] CPU/GPU CPU/Kernel

Classical RK4 106.9 9.7 2.6 10.9 41.0

M2090 RK-Felhberg 119.3 9.9 2.8 12.0 42.3

Nystrom RK4 39.4 7.9 0.8 5.0 51.8

Classical RK4 78.6 4.5 1.7 17.5 47.4

K20 RK Felhberg 87.9 4.4 1.6 19.8 55.2

Nystrom RK4 30.9 3.5 0.7 8.6 46.9

12/05/2013 PDS Meeting 10

Geometry

�  A set of geometry classes to support EM physics and
the particle transportation
�  material (element, material and Sandia table)

�  solids (box, tubs and etc.) and logical/physical vol.
�  Navigator, multilevel locator

�  A simple, but realistic detector is constructed on CPU
and re-mapped on GPU global memory

�  Create a navigator per thread on GPU and reuse it
(locating the global position is expensive)

12/05/2013 PDS Meeting 11

EM Physics
�  Processes and models implemented

�  Use look-up tables for lambda and other parameters
for energy loss and sampling

�  Secondary particles are stored atomically on GPU,
and may be transported to CPU or rescheduled for
the next tracking cycle on GPU

12/05/2013 PDS Meeting 12

Global Memory
�  EM physics processes and models require frequent data

access from/to global memory
�  input: material information, physics tables
�  output: secondary particles (N=0,1,2 per step) and hits

�  Memory transaction (atomic add) for 100K secondaries

�  Strategies for secondary particles, hits and etc.
�  any dynamic memory allocation is very expensive
�  use pre-allocated memory (a fixed size stack on GPU)

NVIDIA M2090 <<<32,128>>> GPU [ms] CPU [ms]

Pre-allocated fixed memory 1.5 39.5

Dynamic allocation per thread 49.8 59.1

Dynamic allocation per block 79.0 59.0

12/05/2013 PDS Meeting 13

Data Structure
�  Coalesced global memory access

�  align memory address for efficient data access

�  Array of Struct (AoS) vs. Struct of Array (SoA)
�  a simple test of loading data (4-doubles, 8-doubles) and

writing back to the global memory (65K accesses)

�  CPU: really depends in the size of data and architecture

0

0.1

0.2

M2090
4-doubles

M2090
8-doubles

K20
4-doubles

K20
8-doubles

AoS

SoA

12/05/2013 PDS Meeting 14

Floating-point Consideration
�  Cost for double-precision

�  memory throughput (x2)

�  possible registers spilling

�  cycles for arithmetic instructions
(x2/x3 in M2090/K20)

�  performance in classical RK4:
float/double = 2.24 (M2090)

�  not negotiable for precision and
accuracy

�  Possibilities for single-precision
�  input physics tables

�  B-field map (texture)

�  local coordination

12/05/2013 PDS Meeting 15

Random Number Generators
�  SIMD random number engine in each thread

�  CUDA pRNG library (CURAND)
�  xor-family (XORWOW)

�  L’Ecuyer’s multiple recursive generator (MRG32k3a)
�  Mersenne Twister (MTGP32, 32bit, period 2^11213)

�  Performance: (64 blocks x 256 threads)
�  two kernels (initialize states, generation) for efficiency

CURAND pRNG Init States [ms] 10K RNG [ms]

XORWOW 4.12 7.92

MRG32k3a 5.02 21.88

MTG32 0.69 31.94

12/05/2013 PDS Meeting 16

Performance: Realistic Simulation

�  A simple calorimeter (a.k.a CMS Ecal)

�  Tracking for 1-step: split kernels (GPIL+sorting+DoIt)

 ()* GPU time using one kernel (sequential stepping)

�  Optimization strategies
�  kernel basis (high-level restructuring)
�  component basis (low-level improvement by profilers)

CPU [ms] GPU [ms] CPU/GPU

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)*

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

12/05/2013 PDS Meeting 17

Xeon Phi Performance
�  Compilation modes

�  offload (heterogeneous for both host and coprocessor)

�  native (coprocessor = standalone multicore computer)

12/05/2013 PDS Meeting 18

Xeon Phi Performance

�  Offload mode for different numerical algorithms
�  one step with the CMS magnetic field map

�  explicit memory copy model
�  parallel loop (map) with OpenMP (omp parallel),

TBB(parallel_for), CilkPlus (cilk_for)

�  Performance measurement
�  100,000 (random) tracks
�  Gain = Time(1 CPU core)/Time(total MIC threads)

Time=(data transfer + parallel execution)

�  number of threads = 4 x (N_phicores -1) = 236

12/05/2013 PDS Meeting 19

Performance Results
�  OpenMP

�  TBB

12/05/2013 PDS Meeting 20

Algorithm CPU[ms] MIC [ms] CPU/MIC First Event

Classical RK4 97.0 29.4 3.3 0.46

Jameson RK4 99.8 30.0 3.3 0.56

RK Felhberg 104.9 29.9 3.5 0.46

NystromRK4 49.0 23.7 2.1 0.17

Algorithm CPU[ms] MIC [ms] CPU/MIC First Event

Classical RK4 98.6 40.1 2.5 0.035

Jameson RK4 100.4 40.3 2.6 0.036

RK Felhberg 109.2 38.1 2.9 0.040

NystromRK4 50.6 29.0 1.8 0.015

Performance Results
�  CilkPlus

�  Summary
�  all programing models show similar performance results
�  current device codes may be poorly optimized for MIC
�  instruction are not vectorized

�  memory accesses are not aligned

12/05/2013 PDS Meeting 21

Algorithm CPU[ms] MIC [ms] CPU/MIC First Event

Classical RK4 101.2 55.5 2.0 0.57

Jameson RK4 109.4 54.2 2.2 0.61

RK Felhberg 106.4 51.4 2.3 0.61

NystromRK4 49.4 49.1 1.1 0.22

GPU Connector to an External Scheduler

�  Vector Prototype (presentation by Federico) can serve
as the track buckets provider to the GPU prototype

�  GPU connector is an interface to the Vector Prototype

�  Challenges
�  different geometry implementation – need to translate

location and history information back and forth
�  difference in data layout

�  only a subset of particle can be handled
�  (ideal) bucket size very different from CPU

�  try to maximize kernel coherence

12/05/2013 PDS Meeting 22

GPU Connector to the Vector Prototype

�  Implementation
�  send back to CPU particles not handled

�  stage particles in a set of buckets
�  list and type of bucket is customizable, one idea is to

buckets based on particle/energy that have a common
(sub)set of likely to apply physics.

�  within this baskets the particles are placed in order/group
given by the VP

�  delay the start of a kernel/task until it has enough data
or has not received any new data in a while

�  to maximize overlap uploads are started for a task after
handling a CPU basket

12/05/2013 PDS Meeting 23

Near-term Plan
�  Continue integration with the vector prototype

�  demonstrate a working example with the connector

�  share components (geometry, physics, transport and
data structure)

�  Redesign the prototype optimally for SIMT/SIMD
�  minimize branches (granulize tasks)

�  maximize locality (instruction and memory)
�  efficient data structure, algorithms and kernel managers

for leveraging parallelism/vectorization

�  Explore hybrid models with CPU/Coprocessors

12/05/2013 PDS Meeting 24

MIC Programming Models
�  Intel programing model

�  TBB: C++ template library

�  CilkPlus: C++ language extension
�  choice of high performance parallel programming models

12/05/2013 PDS Meeting 25

